Higher Order Derivatives

IMPORTANT

Higher Order Derivatives: Overview

This Topic covers sub-topics such as Finding Higher Order Derivatives and Higher Order Derivatives & Partial Derivatives

Important Questions on Higher Order Derivatives

HARD
IMPORTANT

The function f:RR satisfies fx2·f"x=f'x·f'x2 for all real x . Given that f1=1 and f'''1=8, compute the value of f'1+f"1.

HARD
IMPORTANT

If 2x=y15+1y15 then x2-1d2ydx2+xdydx=ky,then find the value of k

HARD
IMPORTANT

If   x=tan( 1 a logy ),  Then what would be the value of    (1+ x 2 ) d 2 y d x 2 +(2xa) dy dx

MEDIUM
IMPORTANT

If   y= sin 1 x 1 x 2 ,  then 1x2d2ydx23xdydxy is equal to:

EASY
IMPORTANT

If y=3e2x+2e3x, then what would be the value of given expression d2ydx25dydx+6y

HARD
IMPORTANT

If y=easin-1x, then show that 1-x2yn+2-2n+1xyn+1-n2+a2yn=0.

MEDIUM
IMPORTANT

If y=sin-1x, then prove that 1-x2yn+2-2n+1xyn+1-n2yn=0

MEDIUM
IMPORTANT

u=log(x2+y2) then prove 2uxy=2uyx.

MEDIUM
IMPORTANT

If fx=ex2, then f"x is equal to

MEDIUM
IMPORTANT

Find the nth derivative of y=x-2x+2x-3

MEDIUM
IMPORTANT

If fx=x-14x-23x-32, then the value of f'''1+f"2+f'3 is

HARD
IMPORTANT

If y=xx2+a2, then prove that yn=-1nn! cosn+1θrn+1, where r=x2+a2 and θ=tan-1ax

HARD
IMPORTANT

If y=exlnx, then find yn.

MEDIUM
IMPORTANT

If x=asecθ, y=btanθ, then find d3ydx3 at x=π6.

MEDIUM
IMPORTANT

Find the directional derivative of φ = x2yz + 4xz + xyz at (1,2,3) in the direction of vector (2i + j  k).

EASY
IMPORTANT

y=exacosx+bsinx, prove that d2ydx2-2dydx+2y=0

EASY
IMPORTANT

If y=tan-1x then prove that:

1+x2yn+1+2nxyn+nn-1yn-1=0

HARD
IMPORTANT

Find the nth derivative of y=x3x2-1.

MEDIUM
IMPORTANT

If yx=11+x-x1+x2-x1+x3-.....-x1+x20, then d2ydx2 at x=0 equals